

SYDNEY BOYS HIGH MOORE PARK, SURRY HILLS

JUNE 2006 TASK #3 YEAR 12

Mathematics

General Instructions:

- Reading time—5 minutes.
- Working time—2 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full
 marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Start each NEW section in a separate answer booklet.
- Hand in your answer booklets in 3 sections:
 Section A(Questions 1 and 2),
 Section B(Questions 3 and 4),

Section C(Questions 5 and 6),

Total marks—100 Marks

- Attempt questions 1–6.
- All questions are NOT of equal value.

Examiner: Mr R. Boros

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

Note: $\ln x = \log_e x$, x > 0

Section A

Marks

Question 1 (20 marks)

(a) Differentiate with respect to x:

(i)
$$x^4 - \sqrt{x} + 1$$

1

(ii) $x \tan x$

1

(iii) $\cos^2 3x$

1

(iv) xe^{2x}

1

(v) $(x+2)\ln(x+2)$

2

(b) Find a primitive of:

(i)
$$2x^2 + 4x - 1$$

1

(ii) $\frac{2}{2x+3}$

1

(iii) $3\sin 2x$

1

1

(iv) $\sec^2(3x+1)$

0

(c) If $\frac{dy}{dx} = 6x - 1$ and the function passes through $(1, 2\frac{1}{2})$, find y as a function of x.

2

- (d) Consider the curve $y = x(x^2 12x + 45)$.

3

(ii) Find the coördinates of the points of inflexion.

2

(iii) Sketch the curve, showing all important features.

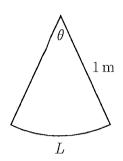
1

(iv) Find the equation (written in general form) of the tangent to the curve at the origin.

(i) Find the coördinates of all the stationary points and determine their nature.

Question 2 (18 marks)

(a)



A pendulum of length 1 m takes one second to swing from one side to the other. It travels at 180 cm/min.

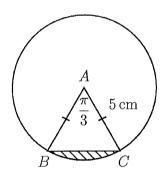
(i) Find the distance L through which it swings.

2

(ii) Calculate the angle θ (in degrees and minutes) through which it swings each second.

2

(b)



Consider the above diagram, not drawn to scale. Give answers correct to the nearest ${\rm cm}^2$.

(i) Find the area of the sector ABC.

1

(ii) Find the area of the shaded segment.

2

(c) State the largest possible domain of the function $y = \ln(1 - 4x^2)$.

1

(d) (i) Sketch the parabola $y = 6x - 3x^2$, showing the x-intercepts and the vertex.

|2|

(ii) Find the area enclosed by the parabola in (d)(i) and the x-axis from x = -1 to x = 1.

3

(e) Find, correct to 2 decimal places,

(i)
$$\int_{-1}^{0} e^{5-2x} dx$$
,

2

(ii) $\int_0^2 \tan^2\left(\frac{x}{2}\right) dx.$

2

(f) Solve, correct to 3 decimal places, the equation $e^{2x} = \ln 1994$.

Section B

(Use a separate writing booklet.)

Marks

Question 3 (15 marks)

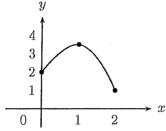
- (a) (i) Sketch the curves $y = \sin x$ and $y = 1 + \sin x$ on the same axes for $0 \le x \le \pi$.
- 3

2

- (ii) The region between the curves in 3(a)(i) is rotated about the x-axis, $0 \le x \le \pi$. Find the volume of the solid of revolution in exact form.

2

(b) A curve y = f(x) is known to pass through the points $(0, 2), (1, 3\frac{1}{2}), (2, 1)$.



The region bounded by the curve and the x-axis from x = 0 to x = 2 is rotated about the x-axis. Use Simpson's Rule to approximate the volume of the solid of revolution.

- (c) Find the equation (written in general form) of the tangent to the curve $y = e^{x^2}$ at the point (1, e) on it.
 - 2
- (d) A pool is being drained and the number of litres of water, L, in the pool at time t minutes is given by the equation

$$L = 120(40 - t)^2.$$

- (i) At what rate is the water draining out of the pool when t=6 minutes?
- |2|

(ii) How long will it take for the pool to be completely empty?

- 1
- (e) Show that the curve $y = x^3 + 3x + 1$ is increasing for all values of x.
- 2

(f) Sketch the graph of the function which has all these features:

$$\lceil 1 \rceil$$

$$f(2) = 0,$$
 $f'(2) = 0,$ $f'(x) < 0$ for all $x < 2,$ $f'(x) > 0$ for all $x > 2.$

Question 4 (17 marks)

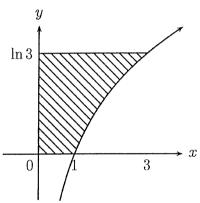
(a) A spherical bubble is being inflated so that the rate of change, R, of the volume, V, in cm³/s, at any instant of time, t, in seconds, is given by

4

$$R = \frac{4t}{t^2 + 1}, \qquad t \ge 0.$$

Initially the volume of the bubble was $40 \,\mathrm{cm}^3$. Given that the volume of a sphere with radius r is $\frac{4}{3}\pi r^3$, find the radius of the bubble after 100 seconds, correct to 2 significant figures.

(b)



The diagram shows the area bounded by the graph $y = \ln x$, the coördinate axes, and the line $y = \ln 3$.

(i) Find the size of the shaded area.

2

(ii) Hence or otherwise find the exact value of $\int_1^3 \ln x \, dx$.

 $x \, \mathrm{cm}$ ED

ABCDE is a pentagon of fixed perimeter P cm. In the figure, triangle ABE is equilateral and BCDE is a rectangle.

The length of AB is x cm.

(i) Show that the length of BC is $\frac{P-3x}{2}$ cm.

1

(ii) Show that the area of the pentagon is given by

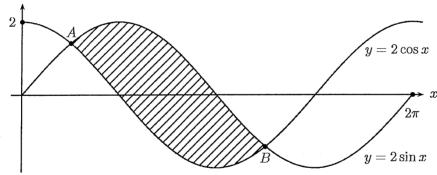
2

$$A = \frac{1}{4} \left[2Px - \left(6 - \sqrt{3}\right)x^2 \right] \text{ cm}^2.$$

(iii) Find the value of $\frac{P}{x}$ for which the area of the pentagon is a maximum.

2

(d) The diagram shows parts of the curves $y = 2 \sin x$ and $y = 2 \cos x$.



(i) Find the points A and B.

2

(ii) Hence calculate the shaded area (leaving your answer in exact form).

2

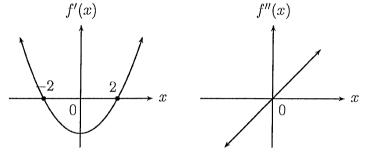
Section C

(Use a separate writing booklet.)

Marks

Question 5 (15 marks)

(a) The graphs below show the first and second derivatives of a curve y = f(x).



(i) For which values of x is the function

2

 (α) increasing,

2

- (β) concave down?
- (ii) Give the x-coördinate for the maximum turning point.

.

(b) (i) Sketch the graph of $y = 3\cos 2x$ in the range $0 \le x \le 2\pi$.

2

(ii) Using your graph of 5(b)(i), find how many solutions there are to the equation $\cos 2x = \frac{1}{3}$ in the range $0 \le x \le 2\pi$.

1

(c) The number of vehicles N, at time t, in the City of Sydney has been graphed over a period of 10 years. It was found that over the whole period

 $\frac{dN}{dt} > O$ while $\frac{d^2N}{dt^2} < O$.

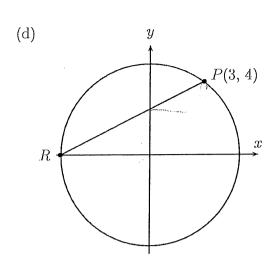
(i) What does this tell you about the number of vehicles in Sydney over this time?

1

(ii) What can be said about the rate of change in the number of cars in Sydney over this period of time?

1

(iii) Make a neat sketch of N against t.

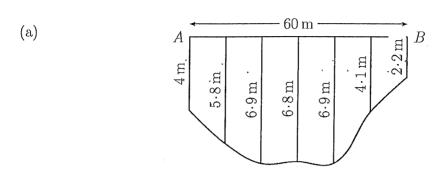


P(3, 4) is a point on the circle $x^2 + y^2 = 25$. Find the length of the minor arc PR correct to 3 significant figures.

3

(e) Given the function $f(x) = xe^{-x^2}$, show that this is an odd function.

Question 6 (15 marks)



|2|

The diagram represents the cross section of a stream which is $60 \,\mathrm{m}$ wide. The depth of the stream was measured at $10 \,\mathrm{m}$ intervals from bank A to bank B. Use the trapezoidal rule to approximate the area of the cross-section of the river.



In the diagram, $P\left(2t, \frac{2}{t}\right)$ is a variable point on the branch of the hyperbola xy = 4 in the first quadrant. The tangent at P meets the y-axis at A and the x-axis at B.

(i) Show that the tangent at P is $t^2y = 4t - x$.

3

(ii) Let the square of the length of AB, i.e. $(AB)^2$, be denoted by W. Find the minimum value of W.

- (c) A patient sick in hospital is being treated with a new medicine to fight bacteria present in the bloodstream. The number of bacteria present, N, t hours after the medicine is administered is given by the equation $N = Be^{-0.04t}$, where B is a constant.
 - (i) Show that the rate at which the number of bacteria decreases is proportional to the number of bacteria present.
 - (ii) After h hours the number of bacteria has halved. Find the value of h (to one decimal place).
 - (iii) After 36 hours the number of bacteria is estimated at 5×10^4 . Find the value of B (to the nearest whole number).
 - (iv) The patient is discharged when the number of bacteria reduces to 10000. When can the patient leave hospital? (Use the value of B found in part (iii) and answer to the nearest whole hour)

End of Paper

1

2

1

SECTION A, 2006 HSC TASK S, MATHEMATICS

QUESTION ONE

a)i)
$$d_{x}(x^{4}-1x+1)$$

= $4x^{3}-\frac{1}{2\sqrt{x}}$.

ii)
$$d_{x}(x \tan x)$$

= $\tan x + x \sec^2 x$.

iii)
$$\frac{d}{dx}(\cos^2 3x)$$

= $-6\cos 3x\sin 3x$.

iv)
$$d_{x}(xe^{2x})$$

= $e^{2x} + 2xe^{2x}$.
= $e^{2x}(1+2x)$.

v)
$$\frac{d}{dx}((x+2) \ln(x+2))$$

= $\ln(x+2) + x+2 \times \frac{1}{x+2}$
= $\ln(x+2) + 1$.

b) i)
$$\int 2x^2 + 4x - 1 \cdot dx$$
.
= $\frac{2}{3}x^3 + 2x^2 - x + C$.

11)
$$\int \frac{2}{(2x+3)} dx = \ln(2x+3) + C$$

III)
$$\int 3 \sin 2x \cdot dx = 3 \int \sin 2x \cdot dx$$
$$= -\frac{3}{2} \cos 2x + C$$

14)
$$\int \sec^2(3x+1) \cdot dx$$
.
= $\frac{1}{3} \tan(3x+1) + C$.

c)
$$\frac{dy}{dx} = 6x - 1$$
 +hro' $(1, 2\frac{1}{2})$
 $y = \int 6x - 1 \cdot dx$

$$y = \int_{-\infty}^{\infty} 6x - 1.6x$$

when y=2½, x=1.

SECTION A, 2006, HSC THOK \$3 MATHEMATICS

QUESTION ONE (CONT).

d) Stationary points when $\frac{dy}{dx} = 0$

$$y=x^3-12x^2+45x$$
.

 $\frac{dy}{dx} = 3x^2 - 24x + 45.$

$$3x^{2}-24x+45=0.$$

$$3(x-5)(x-3)=0.$$

$$\infty=5$$
 or $\infty=3$.

Turning points occur at. A(5,50) & B(3,54)

NATURE

$$\frac{A}{d} = \frac{d^2y}{dx^2} = 6x - 24$$
= 6(5)-24.

) 00 MINIMUM at A (5,50)

$$B_{\parallel} \frac{d^2 y}{dx^2} = 6(3) - 24$$

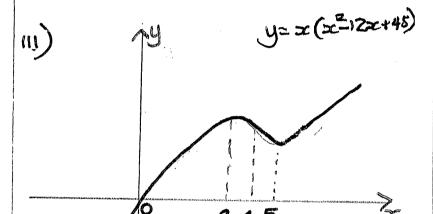
$$6x - 24 = 0$$

 $x = 4$
 $y = 52$.

CONCAVITY

$$3c>4$$
 $\frac{d^2y}{dx^2}>0$ concave up. $3c<4$ $\frac{d^2y}{dx^2}<0$ concave down.

Since there is a change in concavity there is a P.O.I at (4,52).



y at origin, tangent given by dy

$$\frac{dy}{dx} = 3x^2 - 24x + 45$$
.

when x=0.

$$\frac{dy}{dx} = 45$$

ob pt gradient formula gives y-0=45(x-0).

is egtn of tangent at (0,0)

SECTION A, 2006, HSC TASK #3 MATHEMATICS

QUESTION TWO.

- a) i) Travels @ 180 cm/min.
 - of travels 3 cm/sec.
 - on height of swing=3cm.
 - 11) l=r B l=3cm r=100cm.

3cm= 100 B

 $\theta = \frac{3}{100}$

0.03° = 1° 431 811

11) AREA OF SEGMENT = Area of sector - Area DABC.

Area of AABC = ± bc SinA.

= 支(25)517蛋.

 $= 10.83 \, \text{cm}^2$

AREA OF SEGMENT = 13.09 - 10.83.

= 2.26 cm²

SECTION A, 2006, HSC TASKX'S MATHEMATICS

QUESTION TWO (CONT)

c)
$$y=\ln(1-4x^2)$$

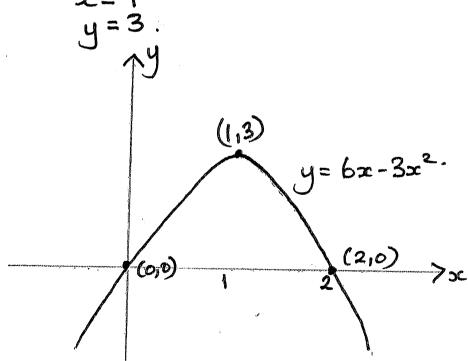
 $1-4x^2>0$
 $x^2<\frac{1}{4}$.
 $\frac{1}{2}< x<\frac{1}{2}$

d)i)
$$y = 6x - 3x^2$$
.
 $y = 3x(2-x)$.

x intercepts at x=0 & x=2.

x.
$$Vertex = \frac{-b}{2a}$$
.

$$x=1$$
 $y=3$



DECLION A, LUG, HOL I FOR D, IVIA I HEIVIATICO

QUESTION TWO (COM)

d) ii) Area =
$$\left| \int_{1}^{0} y \cdot dx \right| + \int_{0}^{1} y \cdot dx$$

$$= \left| \left[3x^{2} - x^{3} \right] \right| + \left[3x^{2} - x^{3} \right]_{0}^{1}$$

$$= \left| \left[-2 \right| + 4 \right|$$

$$= 6 \text{ units}^{2}$$

e)i)
$$\int_{-1}^{0} e^{5-2x} dx = \left[-\frac{1}{2} e^{5-2x} \right]_{-1}^{0}$$

= $-\frac{1}{3} e^{5} + \frac{1}{2} e^{7}$
= $474 \cdot 11 \text{ units}^{2} \cdot (2 \text{ dp})$

1)
$$\int_{0}^{2} \tan^{2}(\frac{x}{2}) \cdot dx = \int_{0}^{2} \sec^{2}(\frac{x}{2}) - 1 \cdot dx$$
.

$$= \left[2 \tan(\frac{x}{2}) - x\right]_{0}^{2}$$

$$= (2 \tan 1 - 2) - (2 \tan 0 - 0)$$

$$= 1.1148$$

$$= 1.11(2 dp)$$

f)
$$e^{2x} = \ln 1994$$
.
 $\ln e^{2x} = \ln (\ln 1994)$.
 $2x = \ln (\ln 1994)$
 $x = 1.014 (3dp)$.

Section 'B's

Redion 3:

$$y = 1 + \sin x$$
 $y = \sin x$

$$V = \pi \int_{0}^{\pi} (1+\sin \alpha)^{2} d\alpha - \pi \int_{0}^{\pi} (\sin \alpha)^{2} d\alpha \qquad (2)$$

$$= \pi \int_{0}^{\pi} [(1+\sin \alpha)^{2} - (\sin \alpha)^{2}] d\alpha$$

$$= \pi \int_{0}^{\pi} [1+2\sin \alpha + \sin \alpha - \sin \alpha] d\alpha$$

$$= \pi \int_{0}^{\pi} [1+2\sin \alpha] d\alpha$$

$$= \pi \left[\alpha + -2\cos \alpha \right]_{0}^{\pi} \qquad (1)$$

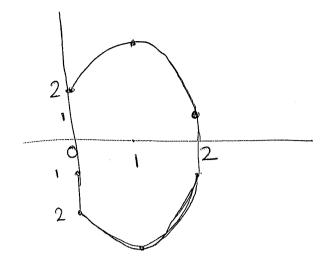
$$= \pi \left[(\pi - 2\cos \alpha) - (0 - 2\cos 0) \right] \qquad (12)$$

$$= \pi \left[\pi + 2 - 0 + 2 \right]$$

$$= \pi \left[\pi + 4 \right] \qquad (1)$$

1 mark 80% - sin 37 3= six 1+sin 2 - sin 37 2= 21.

2)



$$\frac{x}{6a} = \frac{0}{2} \cdot \frac{1}{312} \cdot \frac{1}{4}$$

$$V = \pi \int_{-\infty}^{2} f(x)^2 dx$$

Simpsons Rule =
$$\frac{1}{3} [4+1+4(12'4)]$$

= 18. (1)

1 for My SR forfu)

Destion 3.

2)
$$y = e^{x^2}$$
 point (1.e)

 $dy = e^{x^2} \times 2x$
 $dx = 2xe^{x^2}$ (1)

when $\alpha = 1$ $dy = 2.1 \cdot e^2$
 $dx = 2e$ (2)

2. T: $y - e = 2e$
 $x - 1$
 $y - e = 2ex - 2e$
 $2ex - y - e = 0$ (2)

1) $dx = 240(40 - t) \times -1$
 $dx = 240(40 - t)$ (1)

When $t = 6$
 $dx = -240(40 - 6)$
 $dx = -240(34)$
 $= -8160$. Lm⁻¹

draining out at 8:160 cm⁻¹.

$$0 = 120(40 - E)^2$$

$$(40-t)^2=0$$

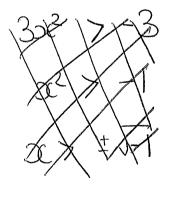
in The pool will be empty after 40 minutes.

e).
$$y=x^3+3x+1$$
.

$$y' = 3x^2 + 3(12)$$

for in creasing curve y'>0.

$$3x^2 + 3 > 0$$
 (2)

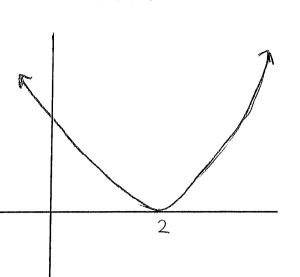


x² will always be positive

== 3x2+3 will always be positive (1)

.. f'(x) > 0 for all x

i. fai is increasing for all a.



Destion 4

$$R = \frac{4t}{L^2 + 1} = \frac{dv}{dt}$$

$$V = \int \frac{4t}{t^{2}+1} dt$$

$$= 2 \int \frac{2t}{t^{2}+1} dt$$

$$= 2 \ln(t^{2}+1) + C. (1)$$

$$C = 40$$
 $3 \cdot V = 210(E^2 + 1) + 400$

when
$$t=100$$

 $V=2\ln(100^2+1)+40$
 $=2\ln(10001)+40$
 $=58.42088073 ①$

$$V = \frac{4}{3} \pi v^{3}$$

$$58.42088073 = \frac{4}{3} \pi v^{3}$$

$$v^{3} = 58.42088073 \times \frac{3}{4\pi}$$

$$r = 2.407094627$$

= 2.4cm (2 sig fig) (1)

$$A = \int_0^{\ln 3} e^y$$

$$= \left[e^{9} \right]_{0}^{\ln 3} \left(\sqrt{2} \right)$$

$$= 2 \qquad (1/2)$$

$$\int_{1}^{3} \ln \alpha \, d\alpha$$

$$= 3\ln 3 - 2.0$$

Westign 4

$$\hat{s}_{n} \quad BC = \frac{p-3x}{2} \quad \hat{l}$$

$$= \frac{1}{2} \times 2 \times \sqrt{3} \times \frac{3}{2}$$

$$= \frac{3}{4} \times \sqrt{2}$$

$$h^{2} = \frac{x^{2} - \left(\frac{x}{2}\right)^{2}}{4}$$

$$= x^{2} - \frac{x^{2}}{4}$$

$$h^{2} = \frac{3x^{2}}{4}$$

 $h = \frac{\sqrt{3}x}{2}$

area of rectangle =
$$P = \frac{3x}{2} \times x$$

$$= \frac{Px - 3x^2}{2} \sqrt{2}$$

$$A = \sqrt{3x^2} + \frac{1}{2} + \frac{1}{2} = \frac{3x^2}{2}$$

$$A = \frac{\sqrt{3}\alpha^2 + 2\beta x - 6\alpha^2}{4}$$

$$A = \frac{1}{4} \left[\sqrt{3} x^2 + 2Px - 6x^2 \right]$$

$$A = \frac{1}{4} \left[2p_{\alpha} - (6 - \sqrt{3})x^{2} \right] cm^{2}$$

ii)
$$A = \frac{9x}{2} - \frac{6x^2}{4} + \frac{\sqrt{3}x^2}{4}$$

$$\frac{dA}{dP} = \frac{P}{2} - \frac{12x}{4} + \frac{2\sqrt{3}x}{4}$$

let dA/dp =0 to find stationary point.

:.
$$0 = \frac{P}{2} - 12x + 2\sqrt{3}x$$
 $\sqrt{2}$

$$12x - 2\sqrt{3}x = 2P$$

$$6x - 53x = P$$

$$(6-53)x=P$$

$$6-\sqrt{3} = P/x$$
. (1)

$$\frac{d^2A}{dx^2} = -3 + \frac{\sqrt{3}}{2} \left(\sqrt{2} \right)$$

max. turning point.

Pentagon is a maximum.

(3) i)
$$y = 2\sin x$$
, $y = 2\cos x$
 $\therefore 2\sin x = 2\cos x$
 $\therefore \sin x = \cos x$ between $0 \le x \le 2\pi$ at $\pi/4$ a $5\pi/4$ (1)

1i) $A = \int_{\pi/4}^{5\pi/4} [2\sin x - 2\cos x] dx$

$$= 2 \int_{\pi/4}^{5\pi/4} [2\sin x - \cos x] dx$$

$$= 2 \left[-\cos x - \sin x \right]_{\pi/4}^{5\pi/4} (1)$$

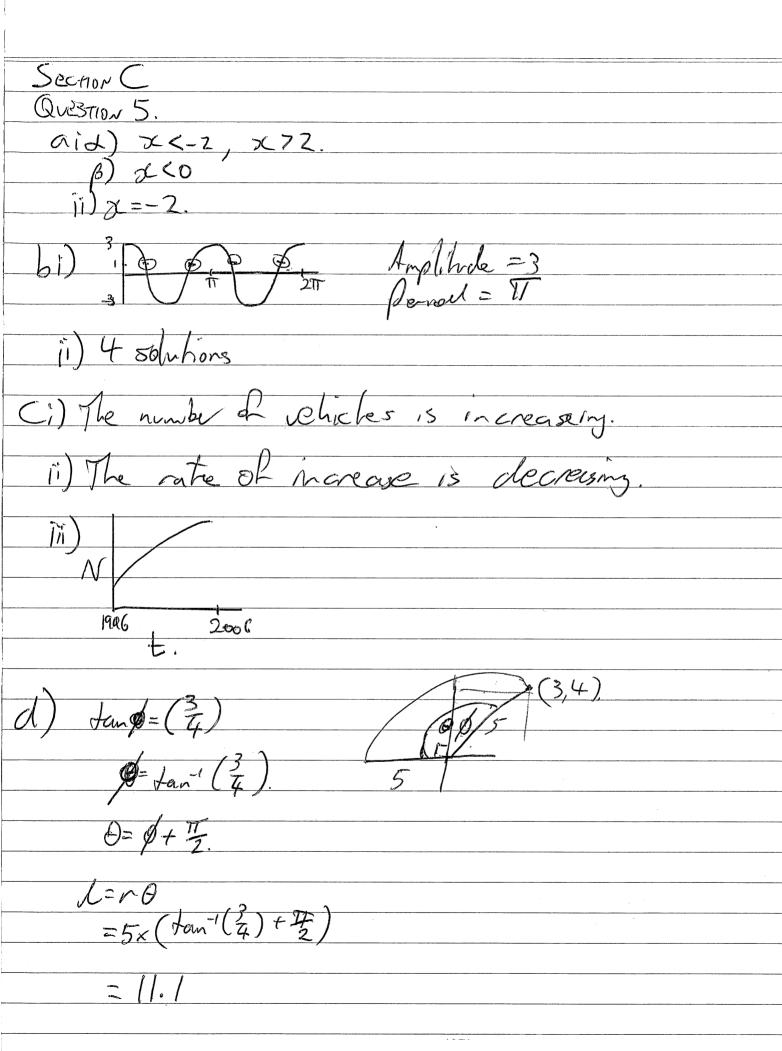
$$= 2 \left[(-\cos x)_{4} - \sin x_{4}^{5\pi/4} \right] - (-\cos x_{4} - \sin x_{4}^{5\pi/4})$$

$$= 2 \left[(\frac{1}{12} - \frac{1}{12}) - (\frac{1}{12} + \frac{1}{12}) \right]$$

$$= 2 \left[(\frac{1}{12} - \frac{1}{12}) - (\frac{1}{12} + \frac{1}{12}) \right]$$

$$= 2 \left[(\frac{1}{12} + \frac{2}{12}) - (\frac{1}{12} + \frac{1}{12}) \right]$$

 $=4520^{2}$



e)
$$f(-a) = -ae^{-(-a)^2}$$

= $-ae^{-a^2}$
= $-f(a)$.

QUESTION G.

a)
$$A = \frac{10}{2} (4+2.2+2(5.8+6.9+6.8+9.6+4.1))$$

= 336m².

$$y - \frac{2}{t} = -\frac{1}{t^2}(x-2t)$$

$$W = (4t)^2 + \left(\frac{4}{E}\right)^2$$

$$0 = 32 t - 32t^{-3}$$

$$(1/)$$
 1000 = 211035 e -0.04 t

$$t = \frac{\ln(\frac{10000}{211035})}{-0.04}$$